Рентгеновская эмиссионная спектроскопия. Атомно-эмиссионная спектроскопия. А.П.Лукирский - основатель научной школы ультрамягкой рентгеновской спектроскопии

Возможности изучения состава и структуры сложных веществ по характеристическим рентгеновским спектрам непосредственно следу­ют из закона Мозли, утверждающего, что квадратный корень из численных значений термов для линий спектров испускания или для ос­новного края поглощения является линейной функцией атомного но­мера элемента или заряда ядра. Терм - числовой параметр, характе­ризующий частоту спектров поглощения. Линии характеристического рентгеновского спектра немногочисленны. Для каждого элемента их число вполне определенное и индивидуальное.

Достоинством анализа рентгеновского спектра [метод рентгенов­ской спектрометрии является то, что относительная интен­сивность большинства спектральных линий постоянна, и основные параметры излучения не зависят от химического состава соединений и смесей, в которые входит данный элемент. В то же время количест­во линий в спектре может зависеть от концентрации данного элемен­та: при очень малых концентрациях элемента в спектре соединения появляются только две-три ярко выраженные линии. Для анализа со­единений по спектрам необходимо определить длины волн основных линий (качественный анализ) и их относительную интенсивность (ко­личественный анализ). Длины волн рентгеновских лучей имеют тот же порядок, что и межатомные расстояния в кристаллических решет­ках исследуемых веществ. Поэтому, регистрируя спектр отраженного излучения, можно получить представление о составе исследуемого соединения.

Известны разновидности метода , в которых используются вторичные эффекты, сопровождающие процесс взаимодействия рентге­новского излучения с веществом биопробы. К данной группе методов в первую очередь относятся эмиссионная рентгеноспектрометрия , при которой регистрируется рентгеновский спектр, возбуж­денный электронами, и абсорбционная рентгеноспектрометрия , по механизму взаимодействия излучения с веществом анало­гичная методу абсорбционной спектрофотометрии.

Чувствительность методов очень сильно меняется (от 10 -4 до 5,10 -10 %) в зависимости от выхода характеристического излучения, контрастности линий, метода возбуждения, методов регистрации и раз­ложения излучения в спектр. Количественный анализ данных можно проводить по спектрам излучения (первичным и вторичным) и спектрам поглощения. Невозможность строгого учета взаимодействия излучения с атомами вещества, а также влияния всех условий проведе­ния измерения заставляют ограничиваться измерениями относительной интенсивности излучений и использовать методы внутреннего или внешнего стандарта.

При исследовании структуры и свойств молекул, процессов ассо­циации молекул и взаимодействия их в растворах широко применяется рентгенофлуоресцентная спектрометрия , о которой уже говорилось выше.

Длины волн рентгеновских лучей имеют тот же порядок, что и межатомные расстояния в кристаллических решетках исследуемых ве­ществ. Поэтому при взаимодействии рентгеновского излучения с про­бой возникает характерная дифракционная картина, отражающая осо­бенности структуры кристаллических решеток или дисперсных систем, т. е. характеризующая состав исследуемого соединения. Исследование структуры соединений и их отдельных компонентов по дифракцион­ным картинам рассеяния рентгеновского излучения на кристаллических решетках и неоднородностях структур положено в основу рентгеноструктурного анализа . Регистрация спектра может осу­ществляться с помощью фотографической пленки (качественный ана­лиз) либо ионизационных, сцинтилляционных или полупроводниковых детекторов. Данный метод позволяет определять симметрию кристал­лов, величины, форму и типы элементарных ячеек, проводить количе­ственные исследования гетерогенных растворов.

Внутр. оболочек атомов . Различают тормозное и ха-рактеристич. рентгеновское излучение. Первое возникает при торможении заряженных частиц (электронов), бомбардирующих мишень в рентгеновских трубках, и имеет сплошной спектр. Характеристич. излучение испускают атомы мишени при столкновении с электронами (первичное излучение) или с рентгеновскими фотонами (вторичное, или флуоресцентное, излучение). В результате этих столкновений с одной из внутр. (К-, L- или М-) оболочек атома вылетает электрон и образуется вакансия, к-рую заполняет электрон с другой (внутр. или внеш.) оболочки. При этом атом испускает квант рентгеновского излучения.

Принятые в рентгеновской спектроскопии обозначения переходов приведены на рис. 1. Все уровни энергии с главными квантовыми числами n = 1, 2, 3, 4... обозначаются соотв. К, L, M, N ...; подуровням энергии с одним и тем же h приписывают последовательно числовые индексы в порядке возрастания энергии, напр. M 1, М 2 , М 3 , M 4 , M 5 (рис. 1). Все переходы на К-, L- или М-уровни называют переходами К-, L- или М-серии (К-, L- или М-переходами) и обозначают греческими буквами (a , b , g ...) с числовыми индексами. Общепринятых рацион. правил обозначения переходов не существует. Наиб. интенсивные переходы происходят между уровнями, удовлетворяющими условиям: D l = 1, D j = 0 или 1 (j = = lb 1 / 2), D n . 0. Характеристич. рентгеновский спектр носит линейчатый характер; каждая линия соответствует определенному переходу.

Рис. 1. Важнейшие рентгеновские переходы.

Поскольку бомбардировка электронами вызывает распад в-ва, при анализе и изучении хим. связей применяют вторичное излучение, как, напр., в рентгеновском флуоресцентном анализе (см. ниже) и в рентгеноэлектронной спектроскопии . Только в рентгеновском микроанализе (см. Электронно-зондовые методы)используют первичные рентгеновские спектры, т.к. пучок электронов легко фокусируется.

Схема прибора для получения рентгеновских спектров приведена на рис. 2. Источником первичного рентгеновского излучения служит рентгеновская трубка. Для разложения рентгеновского излучения в спектр по длинам волн используют кристалл-анализатор или дифракц. решетку. Полученный спектр рентгеновского излучения регистрируют на рентгеновской фотопленке , с помощью ионизац. камеры, спец. счетчиками, полупроводниковым детектором и т. д.

Рентгеновские спектры поглощения связаны с переходом электрона внутр. оболочки на возбужденные оболочки (или зоны). Для получения этих спектров тонкий слой поглощающего в-ва помещают между рентгеновской трубкой и кристаллом-анализатором (рис. 2) или между кристаллом-анализатором и регистрирующим устройством. Спектр поглощения имеет резкую низкочастотную границу, при к-рой происходит скачок поглощения. Часть спектра до этого скачка, когда переход происходит в область до порога поглощения (т.е. в связанные состояния), наз. ближней структурой спектра поглощения и носит квазилинейчатый характер с хорошо выраженными максимумами и минимумами. Такие спектры содержат информацию о вакантных возбужденных состояниях хим. соединений (или зонах проводимости в полупроводниках).

Рис. 2. Схема рентгеновского спектрометра: 1-рентгеновская трубка; 1а-источник электронов (термоэмиссионный катод); 1б-мишень (анод); 2-исследуемое в-во; 3 - кристалл-анализатор; 4-регистрирующее устройство; hv 1 -первичное рентгеновское излучение; hv 2 - вторичное рентгеновское излучение; hv 3 - регистрируемое излучение.

Часть спектра за порогом поглощения, когда переход происходит в состоянии непрерывных значений энергии, наз. дальней тонкой структурой спектра поглощения (EXAFS-extended absorbtion fine structure). В этой области взаимодействие электронов , удаленных из исследуемого атома , с соседними атомами приводит к небольшим колебаниям коэф. поглощения, и в рентгеновском спектре появляются минимумы и максимумы, расстояния между к-рыми связаны с геом. строением поглощающего в-ва, в первую очередь с межатомными расстояниями. Метод EXAFS широко применяют для изучения строения аморфных тел, где обычные дифракц. методы неприменимы.

Энергии рентгеновских переходов между внутр. электронными уровнями атома в соед. зависят от эффективного заряда q изучаемого атома . Сдвиг D E линии поглощения атомов данного элемента в соед. по сравнению с линией поглощения этих атомов в своб. состоянии связан с величиной q. Зависимость в общем случае носит нелинейный характер. Исходя из теоретич. зависимостей D E от q для разл. ионов и эксперим. значения D E в соед. можно определить q. Величины q одного и того же элемента в разных хим. соед. зависят как от степени окисления этого элемента, так и от природы соседних атомов . Напр., заряд S(VI) составляет + 2,49 во фторсульфонатах, +2,34 в сульфатах , +2,11 в сульфоновых к-тах; для S(IV): 1,9 в сульфитах , 1,92 в суль-фонах; для S(II): от -1 до -0,6 в сульфидах и от -0,03 до О в полисульфидах K 2 S x (x = 3-6). Измерение сдвигов D E линии Кa элементов 3-го периода позволяет определить степень окисления последних в хим. соед., а в ряде случаев и их координац. число. Напр., переход от октаэдрич. к тетра-эдрич. расположению атомов 0 в соед. Mg и А1 приводит к заметному уменьшению величины D E.

Для получения рентгеновских эмиссионных спектров в-во облучают первичными рентгеновскими квантами hv 1 для создания вакансии на внутр. оболочке, эта вакансия заполняется в результате перехода электрона с др. внутренней или внешней оболочки, что сопровождается излучением вторичного рентгеновского кванта hv 2 , к-рый регистрируется после отражения от кристалла-анализатора или дифракц. решетки (рис. 2).

Переходам электронов с валентных оболочек (или зон) на вакансию на внутр. оболочке соответствуют т. наз. последние линии эмиссионного спектра. Эти линии отражают структуру валентных оболочек или зон. Согласно правилам отбора , переход на оболочки К и L 1 возможен с валентных оболочек, в формировании к-рых участвуют р-состояния, переход на оболочки L 2 и L 3 -c валентных оболочек (или зон), в формировании к-рых участвуют s- и d-состояния изучаемого атома . Поэтому Ka -линия элементов 2-го периода в соед. дает представление о распределении электронов 2р-орбиталей изучаемого элемента по энергиям, Kb 2 -линия элементов 3-го периода-о распределении электронов 3р-орбиталей и т.д. Линия Kb 5 в координационных соед. элементов 4-го периода несет информацию об электронной структуре лигандов , координированных с изучаемым атомом .

Изучение переходов разл. серий во всех атомах , образующих исследуемое соед., позволяет детально определить структуру валентных уровней (или зон). Особенно ценную информацию получают при рассмотрении угловой зависимости интенсивности линий в эмиссионных спектрах монокристаллов , т.к. использование при этом поляризованного рентгеновского излучения существенно облегчает интерпретацию спектров. Интенсивности линий рентгеновского эмиссионного спектра пропорциональны заселенностям уровней, с к-рых совершается переход, и, следовательно, квадратам коэф. линейной комбинации атомных орбиталей (см. Молекулярных орбиталей методы). На этом основаны способы определения этих коэффициентов.

На зависимости интенсивности линии рентгеновского эмиссионного спектра от концентрации соответствующего элемента основан рентгеновский флуоресцентный анализ (РФА), к-рый широко используют для количеств. анализа разл. материалов, особенно в черной и цветной металлургии , цементной пром-сти и геологии. При этом используют вторичное излучение, т.к. первичный способ возбуждения спектров наряду с разложением в-ва приводит к плохой воспроизводимости результатов. РФА отличается экспрессностью и высокой степенью автоматизации. Пределы обнаружения в зависимости от элемента, состава матрицы и используемого спектрометра лежат в пределах 10 -3 -10 -1 %. Определять можно все элементы, начиная с Mg в твердой или жидкой фазе.

Интенсивность флуоресценции I i изучаемого элемента i зависит не только от его концентрации C i в образце, но и от концентраций др. элементов C j , поскольку они способствуют как поглощению, так и возбуждению флуоресценции элемента i (эффект матрицы). Кроме того, на измеряемую величину I i оказывают существ. влияние пов-сть образца, распределение фаз, размеры зерен и т.д. Для учета этих эффектов применяют большое число приемов. Важнейшие из них-эмпирич. методы внешнего и внутр. стандарта, использование фона рассеянного первичного излучения и метод разбавления.
D С i определяемого элемента, что приводит к росту интенсивности D I i . В этом случае: С i = I i D С i /D I i . Метод особенно эффективен при анализе материалов сложного состава, но предъявляет особые требования к подготовке образцов с добавкой .

Использование рассеянного первичного излучения основано на том, что в этом случае отношение интенсивности флуоресценции I i определяемого элемента к интенсивности фона I ф зависит в осн. от C i и мало зависит от концентрации др. элементов С j .

В методе разбавления к изучаемому образцу добавляют большие кол-ва слабого поглотителя или малые кол-ва сильного поглотителя. Эти добавки должны уменьшить эффект матрицы . Метод разбавления эффективен при анализе водных р-ров и сложных по составу образцов, когда метод внутр. стандарта неприменим.

Существуют также модели корректировки измеренной интенсивности I i на основе интенсивностей I j или концентраций C j др. элементов. Напр., величину C i представляют в виде:

Величины а, b и d находят методом наименьших квадратов на основе измеренных значений I i и I j в нескольких стандартных образцах с известными концентрациями определяемого элемента C i . Модели такого типа широко применяют при серийных анализах на установках РФА, снабженных ЭВМ.

Лит.: Баринский Р. Л., Нефедов В. И., Рентгеноспектральное определение заряда атома в молекулах , М., 1966; Немошкаленко В. В., Алешин В. Г., Теоретические основы рентгеновской эмиссионной спектроскопии , К., 1979; Рентгеновские спектры молекул , Новосиб., 1977; Рентгенофлуоресцент-ный анализ, под ред.. X. Эрхардта, пер. с нем., М., 1985; Нефедов В. И., Вовна В. И., Электронная структура химических соединений , М., 1987.

В. И. Нефедов.

раздел спектроскопии, изучающий спектры испускания (эмиссионные) и поглощения (абсорбционные) рентгеновского излучения, т. е. электромагн. излучения в области длин волн 10 -2 -10 2 нм. Р. с. используют для изучения природы хим. связей и количеств. анализа в-в (рентгеновский спектральный анализ). С помощью Р. с. можно исследовать все элементы (начиная с Li) в соед., находящихся в любом агрегатном состоянии.

Рентгеновские спектры обусловлены переходами электронов внутр. оболочек атомов. Различают тормозное и ха-рактеристич. рентгеновское излучение. Первое возникает при торможении заряженных частиц (электронов), бомбардирующих мишень в рентгеновских трубках, и имеет сплошной спектр. Характеристич. излучение испускают атомы мишени при столкновении с электронами (первичное излучение) или с рентгеновскими фотонами (вторичное, или флуоресцентное, излучение). В результате этих столкновений с одной из внутр. ( К-, L- или М-) оболочек атома вылетает электрон и образуется вакансия, к-рую заполняет электрон с другой (внутр. или внеш.) оболочки. При этом атом испускает квант рентгеновского излучения.

Принятые в Р. с. обозначения переходов приведены на рис. 1. Все уровни энергии с главными квантовыми числами n= 1, 2, 3, 4... обозначаются соотв. К, L, M, N ...; подуровням энергии с одним и тем же hприписывают последовательно числовые индексы в порядке возрастания энергии, напр. M 1, М 2 , М 3 , M 4 , M 5 (рис. 1). Все переходы на К-, L- или М-уровни называют переходами К-, L- или М-серии ( К-, L- или М-переходами) и обозначают греческими буквами (a, b, g...) с числовыми индексами. Общепринятых рацион. правил обозначения переходов не существует. Наиб. интенсивные переходы происходят между уровнями, удовлетворяющими условиям: Dl = 1, Dj = 0 или 1 (j = = lb 1 / 2), Dn .0. Характеристич. рентгеновский спектр носит линейчатый характер; каждая линия соответствует определенному переходу.

Рис. 1. Важнейшие рентгеновские переходы.

Поскольку бомбардировка электронами вызывает распад в-ва, при анализе и изучении хим. связей применяют вторичное излучение, как, напр., в рентгеновском флуоресцентном анализе (см. ниже) и в рентгеноэлектронной спектроскопии. Только в рентгеновском микроанализе (см. Электронно-зондовые методы )используют первичные рентгеновские спектры, т. к. пучок электронов легко фокусируется.

Схема прибора для получения рентгеновских спектров приведена на рис. 2. Источником первичного рентгеновского излучения служит рентгеновская трубка. Для разложения рентгеновского излучения в спектр по длинам волн используют кристалл-анализатор или дифракц. решетку. Полученный спектр рентгеновского излучения регистрируют на рентгеновской фотопленке, с помощью ионизац. камеры, спец. счетчиками, полупроводниковым детектором и т. д.

Рентгеновские спектры поглощения связаны с переходом электрона внутр. оболочки на возбужденные оболочки (или зоны). Для получения этих спектров тонкий слой поглощающего в-ва помещают между рентгеновской трубкой и кристаллом-анализатором (рис. 2) или между кристаллом-анализатором и регистрирующим устройством. Спектр поглощения имеет резкую низкочастотную границу, при к-рой происходит скачок поглощения. Часть спектра до этого скачка, когда переход происходит в область до порога поглощения (т. е. в связанные состояния), наз. ближней структурой спектра поглощения и носит квазилинейчатый характер с хорошо выраженными максимумами и минимумами. Такие спектры содержат информацию о вакантных возбужденных состояниях хим. соединений (или зонах проводимости в полупроводниках).

Рис. 2. Схема рентгеновского спектрометра: 1-рентгеновская трубка; 1а-источник электронов (термоэмиссионный катод); 1 б- мишень (анод); 2-исследуемое в-во; 3 - кристалл-анализатор; 4-регистрирующее устройство; hv 1 -первичное рентгеновское излучение; hv 2 - вторичное рентгеновское излучение; hv 3 - регистрируемое излучение.

Часть спектра за порогом поглощения, когда переход происходит в состоянии непрерывных значений энергии, наз. дальней тонкой структурой спектра поглощения (EXAFS-extended absorbtion fine structure). В этой области взаимодействие электронов, удаленных из исследуемого атома, с соседними атомами приводит к небольшим колебаниям коэф. поглощения, и в рентгеновском спектре появляются минимумы и максимумы, расстояния между к-рыми связаны с геом. строением поглощающего в-ва, в первую очередь с межатомными расстояниями. Метод EXAFS широко применяют для изучения строения аморфных тел, где обычные дифракц. методы неприменимы.

Энергии рентгеновских переходов между внутр. электронными уровнями атома в соед. зависят от эффективного заряда qизучаемого атома. Сдвиг DE линии поглощения атомов данного элемента в соед. по сравнению с линией поглощения этих атомов в своб. состоянии связан с величиной q. Зависимость в общем случае носит нелинейный характер. Исходя из теоретич. зависимостей DE от qдля разл. ионов и эксперим. значения DEв соед. можно определить q. Величины qодного и того же элемента в разных хим. соед. зависят как от степени окисления этого элемента, так и от природы соседних атомов. Напр., заряд S(VI) составляет + 2,49 во фторсульфонатах, +2,34 в сульфатах, +2,11 в сульфоновых к-тах; для S(IV): 1,9 в сульфитах, 1,92 в суль-фонах; для S(II): от Ч1 до Ч0,6 в сульфидах и от Ч0,03 до О в полисульфидах K 2 S x (x= 3-6). Измерение сдвигов DE линии Кa элементов 3-го периода позволяет определить степень окисления последних в хим. соед., а в ряде случаев и их координац. число. Напр., переход от октаэдрич. к тетра-эдрич. расположению атомов 0 в соед. Mg и А1 приводит к заметному уменьшению величины DE.

Для получения рентгеновских эмиссионных спектров в-во облучают первичными рентгеновскими квантами hv 1 для создания вакансии на внутр. оболочке, эта вакансия заполняется в результате перехода электрона с др. внутренней или внешней оболочки, что сопровождается излучением вторичного рентгеновского кванта hv 2 , к-рый регистрируется после отражения от кристалла-анализатора или дифракц. решетки (рис. 2).

Переходам электронов с валентных оболочек (или зон) на вакансию на внутр. оболочке соответствуют т. наз. последние линии эмиссионного спектра. Эти линии отражают структуру валентных оболочек или зон. Согласно правилам отбора, переход на оболочки Ки L 1 возможен с валентных оболочек, в формировании к-рых участвуют р-состояния, переход на оболочки L 2 и L 3 -c валентных оболочек (или зон), в формировании к-рых участвуют s- и d-состояния изучаемого атома. Поэтому Ka -линия элементов 2-го периода в соед. дает представление о распределении электронов 2р-орбиталей изучаемого элемента по энергиям, Kb 2 -линия элементов 3-го периода-о распределении электронов 3р-орбиталей и т. д. Линия Kb 5 в координационных соед. элементов 4-го периода несет информацию об электронной структуре лигандов, координированных с изучаемым атомом.

Изучение переходов разл. серий во всех атомах, образующих исследуемое соед., позволяет детально определить структуру валентных уровней (или зон). Особенно ценную информацию получают при рассмотрении угловой зависимости интенсивности линий в эмиссионных спектрах монокристаллов, т. к. использование при этом поляризованного рентгеновского излучения существенно облегчает интерпретацию спектров. Интенсивности линий рентгеновского эмиссионного спектра пропорциональны заселенностям уровней, с к-рых совершается переход, и, следовательно, квадратам коэф. линейной комбинации атомных орбиталей (см. Молекулярных орбиталей методы). На этом основаны способы определения этих коэффициентов.

На зависимости интенсивности линии рентгеновского эмиссионного спектра от концентрации соответствующего элемента основан рентгеновский флуоресцентный анализ (РФА), к-рый широко используют для количеств. анализа разл. материалов, особенно в черной и цветной металлургии, цементной пром-сти и геологии. При этом используют вторичное излучение, т. к. первичный способ возбуждения спектров наряду с разложением в-ва приводит к плохой воспроизводимости результатов. РФА отличается экспрессностью и высокой степенью автоматизации. Пределы обнаружения в зависимости от элемента, состава матрицы и используемого спектрометра лежат в пределах 10 -3 -10 -1 %. Определять можно все элементы, начиная с Mg в твердой или жидкой фазе.

Интенсивность флуоресценции i изучаемого элемента i зависит не только от его концентрации в образце, но и от концентраций др. элементов , поскольку они способствуют как поглощению, так и возбуждению флуоресценции элемента i (эффект матрицы). Кроме того, на измеряемую величину i оказывают существ. влияние пов-сть образца, распределение фаз, размеры зерен и т. д. Для учета этих эффектов применяют большое число приемов. Важнейшие из них-эмпирич. методы внешнего и внутр. стандарта, использование фона рассеянного первичного излучения и метод разбавления.

В методе внеш. стандарта неизвестную концентрацию элемента С i определяют путем сравнения интенсивности i с аналогичными величинами I ст стандартных образцов, для к-рых известны значения концентрации С ст определяемого элемента. При этом: С i = С ст i /I ст. Метод позволяет учесть поправки, связанные с аппаратурой, однако для точного учета влияния матрицы стандартный образец должен быть близок по составу к анализируемому.

В методе внутр. стандарта к анализируемому образцу добавляют нек-рое кол-во D С i определяемого элемента, что приводит к росту интенсивности D i . В этом случае: С i = i D С i /D i . Метод особенно эффективен при анализе материалов сложного состава, но предъявляет особые требования к подготовке образцов с добавкой.

Использование рассеянного первичного излучения основано на том, что в этом случае отношение интенсивности флуоресценции i определяемого элемента к интенсивности фона I ф зависит в осн. от и мало зависит от концентрации др. элементов С j .

В методе разбавления к изучаемому образцу добавляют большие кол-ва слабого поглотителя или малые кол-ва сильного поглотителя. Эти добавки должны уменьшить эффект матрицы. Метод разбавления эффективен при анализе водных р-ров и сложных по составу образцов, когда метод внутр. стандарта неприменим.

Существуют также модели корректировки измеренной интенсивности i на основе интенсивностей j или концентраций др. элементов. Напр., величину представляют в виде:

Величины а, b и dнаходят методом наименьших квадратов на основе измеренных значений i и j в нескольких стандартных образцах с известными концентрациями определяемого элемента . Модели такого типа широко применяют при серийных анализах на установках РФА, снабженных ЭВМ.

Лит.: Баринский Р. Л., Нефедов В. И., Рентгеноспектральное определение заряда атома в молекулах, М., 1966; Немошкаленко В. В., Алешин В. Г., Теоретические основы рентгеновской эмиссионной спектроскопии, К., 1979; Рентгеновские спектры молекул, Новосиб., 1977; Рентгенофлуоресцент-ный анализ, под ред.. X. Эрхардта, пер. с нем., М., 1985; Нефедов В. И., Вовна В. И., Электронная структура химических соединений, М., 1987.

"РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ" в книгах

Спектроскопия политика

Из книги Черчилль автора Бедарида Франсуа

Спектроскопия политика До сих пор Уинстону сопутствовал успех. Между тем XX век только-только вступил в свои права, и пока рано было оценивать роль Уинстона, его вес в политической жизни эпохи, равно как и его перспективы на будущее. Кем, в сущности, был этот яркий,

Спектроскопия

Из книги История лазера автора Бертолотти Марио

Спектроскопия Если мы теперь обратимся к более фундаментальным применениям, нам следует упомянуть спектроскопию. Когда были изобретены лазеры на красителях и стало очевидным, что их длины волн можно широко изменять в некотором заданном диапазоне, сразу же было

Рентгеновская камера

автора Коллектив авторов

Рентгеновская камера Рентгеновская камера – прибор исследования атомной структуры в рентгеновском структурном анализе. Способ основан на дифракции рентгеновских лучей и ее отображении на фотопленке. Появление этого прибора стало возможным только после того, как

Рентгеновская трубка

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновская трубка Рентгеновская трубка – электровакуумный прибор, который служит источником рентгеновского излучения. Подобное излучение появляется при торможении электронов, которые испускаются катодом, и их ударе об анод; при этом энергия электронов, их скорость

УЛЬТРАФИОЛЕТОВАЯ И РЕНТГЕНОВСКАЯ АСТРОНОМИЯ

Из книги Астрономия автора Из книги Большая Советская Энциклопедия (СП) автора БСЭ

Спектроскопия

Из книги Большая Советская Энциклопедия (СП) автора БСЭ

АЭС основана на термическом возбуждении свободных атомов и регистрации оптического спектра испускания возбужденных атомов:

А + Е = А* = А + hγ,

где: А – атом элемента; А* - возбужденный атом; hγ – испускаемый квант света; Е – энергия, поглощаемая атомом.

Источники возбуждения атомов = атомизаторы (см. ранее)

Атомно-абсорбционная спектроскопия

ААС основана на поглощении излучения оптического диапазона невозбужденными свободными атомами:

А + hγ (от вн. ист. изл.) = А*,

где: А – атом элемента; А* - возбужденный атом; hγ –квант света, поглощенный атомом.

атомизаторы – пламенные, электротермические (см. ранее)

Особенность ААС – наличие в приборе источников внешнего излучения, характеризующихся высокой степенью монохроматичности.

Источники излучения – лампы с полым катодом и безэлектродные разрядные лампы

Атомная рентгеновская спектроскопия

    В методах рентгеновской спектроскопии используют излучение рентгеновского диапазона, соответствующее изменению энергии внутренних электронов.

    Структуры энергетических уровней внутренних электронов в атомарном и молекулярном состояниях близки, поэтому атомизации пробы не требуется.

    Поскольку все внутренние орбитали в атомах заполнены, то переходы внутренних электронов возможны только при условии предварительного образования вакансии вследствие ионизации атома.

Ионизация атома происходит под действием внешнего источника рентгеновского излучения

Классификация методов АРС

    Спектроскопия электромагнитного излучения :

    Рентгеноэмиссионный анализ (РЭА);

    Рентгеноабсорбционный анализ (РАА);

    Рентгенофлуоресцентный анализ (РФА).

    Электронная :

    Рентгенофотоэлектронная (РФЭС);

    Оже-электронная (ОЭС).

Молекулярная спектроскопия

Классификация методов:

    Эмиссионная (не существует) Почему?

    Абсорбционная :

    Спектрофотомерия (в ВС и УФ);

    ИК-спектроскопия.

    Люминесцентный анализ (флуориметрия).

    Турбидиметрия и нефелометрия .

    Поляриметрия .

    Рефрактометрия .

Молекулярная абсорбционная спектроскопия

Молекулярная абсорбционная спектроскопия основана на энергетических и колебательных переходах внешних (валентных) электронов в молекулах. Используется излучение УФ- и видимой области оптического диапазона – это спектрофотомерия (энергетические электронные переходы). Используется излучение ИК-области оптического диапазона – это ИК-спектроскопия (колебательные переходы).

Спектрофотометрия

Основана на:

    законе Бугера-Ламберта-Бера:

    Законе аддитивности оптических плотностей:

А = ε 1 ·l·C 1 + ε 2 ·l·C 2 +….

Анализ окрашенных растворов – в ВС (фотоколориметрия);

Анализ растворов, способных поглощать ультрафиолетовый свет – в УФ (спектрофотометрия).

Ответьте на вопросы:

Основные приемы фотометрических измерений

    Способ калибровочного графика.

    Способ добавок.

    Экстракционно-фотометрический способ.

    Способ дифференциальной фотометрии.

    Фотометрическое титрование.

Фотометрическое определение состоит из:

1 Перевода определяемого компонента в

светопоглощающее соединение.

2 Измерения интенсивности поглощения света

(абсорбционности) раствором светопоглощающего соединения.

Применение фотометрии

1 Вещества, имеющие интенсивные полосы

поглощения (ε ≥ 10 3) определяют по собственному

светопоглощению (ВС – KMnO 4 , УФ – фенол).

2 Вещества, не имеющие собственного

светопоглощения, анализируют после проведения

фотометрических реакций (получение с

ветопоглощающих соединений). В н/х – реакции

комплексообразования, в о/х – синтез органических

красителей.

3 Широко используется экстракционно-фотометрический

метод. Что это такое? Как провести определение? Примеры.

РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ

раздел спектроскопии, изучающий спектры испускания (эмиссионные) и поглощения (абсорбционные) рентгеновского излучения, т. е. электромагн. излучения в области длин волн 10 -2 -10 2 нм. Р. с. используют для изучения природы хим. связей и количеств. анализа в-в (рентгеновский спектральный анализ). С помощью Р. с. можно исследовать все элементы (начиная с Li) в соед., находящихся в любом агрегатном состоянии.

Рентгеновские спектры обусловлены переходами электронов внутр. оболочек атомов. Различают тормозное и ха-рактеристич. рентгеновское излучение. Первое возникает при торможении заряженных частиц (электронов), бомбардирующих мишень в рентгеновских трубках, и имеет сплошной спектр. Характеристич. излучение испускают атомы мишени при столкновении с электронами (первичное излучение) или с рентгеновскими фотонами (вторичное, или флуоресцентное, излучение). В результате этих столкновений с одной из внутр. ( К-, L- или М-) оболочек атома вылетает электрон и образуется вакансия, к-рую заполняет электрон с другой (внутр. или внеш.) оболочки. При этом атом испускает квант рентгеновского излучения.

Принятые в Р. с. обозначения переходов приведены на рис. 1. Все уровни энергии с главными квантовыми числами n= 1, 2, 3, 4... обозначаются соотв. К, L, M, N ...; подуровням энергии с одним и тем же hприписывают последовательно числовые индексы в порядке возрастания энергии, напр. M 1, М 2 , М 3 , M 4 , M 5 (рис. 1). Все переходы на К-, L- или М-уровни называют переходами К-, L- или М-серии ( К-, L- или М-переходами) и обозначают греческими буквами (a, b, g...) с числовыми индексами. Общепринятых рацион. правил обозначения переходов не существует. Наиб. интенсивные переходы происходят между уровнями, удовлетворяющими условиям: Dl = 1, Dj = 0 или 1 (j = = lb 1 / 2), Dn .0. Характеристич. рентгеновский спектр носит линейчатый характер; каждая линия соответствует определенному переходу.

Рис. 1. Важнейшие рентгеновские переходы.

Поскольку бомбардировка электронами вызывает распад в-ва, при анализе и изучении хим. связей применяют вторичное излучение, как, напр., в рентгеновском флуоресцентном анализе (см. ниже) и в рентгеноэлектронной спектроскопии. Только в рентгеновском микроанализе (см. Электронно-зондовые методы )используют первичные рентгеновские спектры, т. к. пучок электронов легко фокусируется.

Схема прибора для получения рентгеновских спектров приведена на рис. 2. Источником первичного рентгеновского излучения служит рентгеновская трубка. Для разложения рентгеновского излучения в спектр по длинам волн используют кристалл-анализатор или дифракц. решетку. Полученный спектр рентгеновского излучения регистрируют на рентгеновской фотопленке, с помощью ионизац. камеры, спец. счетчиками, полупроводниковым детектором и т. д.

Рентгеновские спектры поглощения связаны с переходом электрона внутр. оболочки на возбужденные оболочки (или зоны). Для получения этих спектров тонкий слой поглощающего в-ва помещают между рентгеновской трубкой и кристаллом-анализатором (рис. 2) или между кристаллом-анализатором и регистрирующим устройством. Спектр поглощения имеет резкую низкочастотную границу, при к-рой происходит скачок поглощения. Часть спектра до этого скачка, когда переход происходит в область до порога поглощения (т. е. в связанные состояния), наз. ближней структурой спектра поглощения и носит квазилинейчатый характер с хорошо выраженными максимумами и минимумами. Такие спектры содержат информацию о вакантных возбужденных состояниях хим. соединений (или зонах проводимости в полупроводниках).

Рис. 2. Схема рентгеновского спектрометра: 1-рентгеновская трубка; 1а-источник электронов (термоэмиссионный катод); 1 б- мишень (анод); 2-исследуемое в-во; 3 - кристалл-анализатор; 4-регистрирующее устройство; hv 1 -первичное рентгеновское излучение; hv 2 - вторичное рентгеновское излучение; hv 3 - регистрируемое излучение.

Часть спектра за порогом поглощения, когда переход происходит в состоянии непрерывных значений энергии, наз. дальней тонкой структурой спектра поглощения (EXAFS-extended absorbtion fine structure). В этой области взаимодействие электронов, удаленных из исследуемого атома, с соседними атомами приводит к небольшим колебаниям коэф. поглощения, и в рентгеновском спектре появляются минимумы и максимумы, расстояния между к-рыми связаны с геом. строением поглощающего в-ва, в первую очередь с межатомными расстояниями. Метод EXAFS широко применяют для изучения строения аморфных тел, где обычные дифракц. методы неприменимы.

Энергии рентгеновских переходов между внутр. электронными уровнями атома в соед. зависят от эффективного заряда qизучаемого атома. Сдвиг DE линии поглощения атомов данного элемента в соед. по сравнению с линией поглощения этих атомов в своб. состоянии связан с величиной q. Зависимость в общем случае носит нелинейный характер. Исходя из теоретич. зависимостей DE от qдля разл. ионов и эксперим. значения DEв соед. можно определить q. Величины qодного и того же элемента в разных хим. соед. зависят как от степени окисления этого элемента, так и от природы соседних атомов. Напр., заряд S(VI) составляет + 2,49 во фторсульфонатах, +2,34 в сульфатах, +2,11 в сульфоновых к-тах; для S(IV): 1,9 в сульфитах, 1,92 в суль-фонах; для S(II): от Ч1 до Ч0,6 в сульфидах и от Ч0,03 до О в полисульфидах K 2 S x (x= 3-6). Измерение сдвигов DE линии Кa элементов 3-го периода позволяет определить степень окисления последних в хим. соед., а в ряде случаев и их координац. число. Напр., переход от октаэдрич. к тетра-эдрич. расположению атомов 0 в соед. Mg и А1 приводит к заметному уменьшению величины DE.

Для получения рентгеновских эмиссионных спектров в-во облучают первичными рентгеновскими квантами hv 1 для создания вакансии на внутр. оболочке, эта вакансия заполняется в результате перехода электрона с др. внутренней или внешней оболочки, что сопровождается излучением вторичного рентгеновского кванта hv 2 , к-рый регистрируется после отражения от кристалла-анализатора или дифракц. решетки (рис. 2).

Переходам электронов с валентных оболочек (или зон) на вакансию на внутр. оболочке соответствуют т. наз. последние линии эмиссионного спектра. Эти линии отражают структуру валентных оболочек или зон. Согласно правилам отбора, переход на оболочки Ки L 1 возможен с валентных оболочек, в формировании к-рых участвуют р-состояния, переход на оболочки L 2 и L 3 -c валентных оболочек (или зон), в формировании к-рых участвуют s- и d-состояния изучаемого атома. Поэтому Ka -линия элементов 2-го периода в соед. дает представление о распределении электронов 2р-орбиталей изучаемого элемента по энергиям, Kb 2 -линия элементов 3-го периода-о распределении электронов 3р-орбиталей и т. д. Линия Kb 5 в координационных соед. элементов 4-го периода несет информацию об электронной структуре лигандов, координированных с изучаемым атомом.

Изучение переходов разл. серий во всех атомах, образующих исследуемое соед., позволяет детально определить структуру валентных уровней (или зон). Особенно ценную информацию получают при рассмотрении угловой зависимости интенсивности линий в эмиссионных спектрах монокристаллов, т. к. использование при этом поляризованного рентгеновского излучения существенно облегчает интерпретацию спектров. Интенсивности линий рентгеновского эмиссионного спектра пропорциональны заселенностям уровней, с к-рых совершается переход, и, следовательно, квадратам коэф. линейной комбинации атомных орбиталей (см. Молекулярных орбиталей методы). На этом основаны способы определения этих коэффициентов.

На зависимости интенсивности линии рентгеновского эмиссионного спектра от концентрации соответствующего элемента основан рентгеновский флуоресцентный анализ (РФА), к-рый широко используют для количеств. анализа разл. материалов, особенно в черной и цветной металлургии, цементной пром-сти и геологии. При этом используют вторичное излучение, т. к. первичный способ возбуждения спектров наряду с разложением в-ва приводит к плохой воспроизводимости результатов. РФА отличается экспрессностью и высокой степенью автоматизации. Пределы обнаружения в зависимости от элемента, состава матрицы и используемого спектрометра лежат в пределах 10 -3 -10 -1 %. Определять можно все элементы, начиная с Mg в твердой или жидкой фазе.

Интенсивность флуоресценции i изучаемого элемента i зависит не только от его концентрации в образце, но и от концентраций др. элементов , поскольку они способствуют как поглощению, так и возбуждению флуоресценции элемента i (эффект матрицы). Кроме того, на измеряемую величину i оказывают существ. влияние пов-сть образца, распределение фаз, размеры зерен и т. д. Для учета этих эффектов применяют большое число приемов. Важнейшие из них-эмпирич. методы внешнего и внутр. стандарта, использование фона рассеянного первичного излучения и метод разбавления.

В методе внеш. стандарта неизвестную концентрацию элемента С i определяют путем сравнения интенсивности i с аналогичными величинами I ст стандартных образцов, для к-рых известны значения концентрации С ст определяемого элемента. При этом: С i = С ст i /I ст. Метод позволяет учесть поправки, связанные с аппаратурой, однако для точного учета влияния матрицы стандартный образец должен быть близок по составу к анализируемому.

В методе внутр. стандарта к анализируемому образцу добавляют нек-рое кол-во D С i определяемого элемента, что приводит к росту интенсивности D i . В этом случае: С i = i D С i /D i . Метод особенно эффективен при анализе материалов сложного состава, но предъявляет особые требования к подготовке образцов с добавкой.

Использование рассеянного первичного излучения основано на том, что в этом случае отношение интенсивности флуоресценции i определяемого элемента к интенсивности фона I ф зависит в осн. от и мало зависит от концентрации др. элементов С j .

В методе разбавления к изучаемому образцу добавляют большие кол-ва слабого поглотителя или малые кол-ва сильного поглотителя. Эти добавки должны уменьшить эффект матрицы. Метод разбавления эффективен при анализе водных р-ров и сложных по составу образцов, когда метод внутр. стандарта неприменим.

Существуют также модели корректировки измеренной интенсивности i на основе интенсивностей j или концентраций др. элементов. Напр., величину представляют в виде:

Величины а, b и dнаходят методом наименьших квадратов на основе измеренных значений i и j в нескольких стандартных образцах с известными концентрациями определяемого элемента . Модели такого типа широко применяют при серийных анализах на установках РФА, снабженных ЭВМ.

Лит.: Баринский Р. Л., Нефедов В. И., Рентгеноспектральное определение заряда атома в молекулах, М., 1966; Немошкаленко В. В., Алешин В. Г., Теоретические основы рентгеновской эмиссионной спектроскопии, К., 1979; Рентгеновские спектры молекул, Новосиб., 1977; Рентгенофлуоресцент-ный анализ, под ред.. X. Эрхардта, пер. с нем., М., 1985; Нефедов В. И., Вовна В. И., Электронная структура химических соединений, М., 1987.

В. И. Нефедов.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

  • РЕНИЯ ОКСИДЫ
  • РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ

Смотреть что такое "РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ" в других словарях:

    РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ - получение рентгеновских спектров испускания и поглощения и их использование в исследованиях электронной энергетич. структуры атомов, молекул и тв. тел. К Р. с. относят также рентгеноэлектронную спектроскопию, исследование зависимости… … Физическая энциклопедия

    РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ - методы исследования атомной структуры по рентгеновским спектрам. Для получения рентгеновских спектров исследуемое вещество бомбардируют электронами в рентгеновской трубке либо возбуждают флуоресценцию исследуемого вещества, облучая его… … Большой Энциклопедический словарь

    рентгеновская спектроскопия - Термин рентгеновская спектроскопия Термин на английском X ray spectroscopy Синонимы Аббревиатуры Связанные термины рентгеновская фотоэлектронная спектроскопия Определение методика изучения состава вещества по спектрам поглощения (абсорбции) или… … Энциклопедический словарь нанотехнологий

    Рентгеновская спектроскопия - получение рентгеновских спектров (См. Рентгеновские спектры) испускания и поглощения и их применение к исследованию электронной энергетической структуры атомов, молекул и твёрдых тел. К Р. с. относят также рентгено электронную… … Большая советская энциклопедия

    рентгеновская спектроскопия - методы исследований атомной структуры по рентгеновским спектрам. Для получения рентгеновских спектров исследуемое вещество бомбардируют электронами в рентгеновской трубке либо возбуждают флуоресценцию исследуемого вещества под действием… … Энциклопедический словарь

    рентгеновская спектроскопия - rentgeno spektroskopija statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos elektroninės sandaros tyrimas pagal spinduliavimo, sugerties, fotoelektronų rentgeno spektrus bei pagal rentgeno spektrų intensyvumo priklausomybę nuo… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    рентгеновская спектроскопия - rentgeno spektroskopija statusas T sritis fizika atitikmenys: angl. X ray spectroscopy vok. Röntgenspektroskopie, f; Röntgenstrahlenspektroskopie, f rus. рентгеновская спектроскопия, f pranc. spectroscopie à rayons X, f; spectroscopie aux rayons… … Fizikos terminų žodynas

    РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ - методы исследований атомной структуры по рентгеновским спектрам. Для получения рентгеновских спектров исследуемое в во бомбардируют электронами в рентгеновской трубке либо возбуждают флуоресценцию исследуемого в ва под действием рентгеновского… … Естествознание. Энциклопедический словарь

    Рентгеновская спектроскопия (XAS, EXAFS и др.) - СтатьиXAFSXANES спектроскопиякрай полосы поглощениярентгеновская спектроскопиясинхротронное излучение (

Похожие статьи

© 2024 ganarts.ru. Теплица и сад. Обустройство. Выращивание. Болезни и вредители. Рассада.